MONROBOT XI PROGRAM MANUAL

;
4
e
;
pr—
- .
‘y.\ Copyright 1960

Monroe Calculating Machine Company, Inc.
Orange, New Jersey
Form MO-96 ED 1-64

l : Printed in U.S.A.

A b Lo L el e e

ko

3

—

S o

INTRODUCTION

The purpose of this manual is to acquaint the programmer
and coder with the machine language of Monrobot Mark XI.
The manual is written for those people who are experienced
in the programming and coding of general purpose computers.
It is assumed that most computer terms used here are famll-
iar to the reader; terms that are specific to the Monrobot
Mark XI are defined as they are introduced into the text.

No attempt has been made to provide either introductory
comments about computers or methods of programming com-
puters. For those people not experienced in programming,
Monroe literature or some text on basic computer program-
ming should be studied prior to reading and using this
manual.

Other Monroe literature defines the specific techniques of
numeric input and output, alphanumeric handling, multlipli-
cation and division, and program input/output.

The scope of this manual 1is believed sufficiently broad to
enable people to program, code, and understand Monrobot
Mark XI in a reasonably short period of time. Consequently,
some of the more esoteric information about the computer
has been omitted.

ii

TABLE OF CONTENTS

INTRODUCTION. . . - « « &« o o &

GENEBAL L] L L] . . L] L] L L] . L] .

ERPAL ., o s e w e e e
Output L] L] . L] . . L] L] L] L]
SEXADECIMAL SYSTEM.
Tetrad Numbering

Conversion . . . « «
Instructions . . . « .+ .+ &

Monrobot Mark XI Commands.

NUMBER SYSTEM .

Overflow

STORAGE SYSTEM. « «+ &
General Storage.
Access Time.,
Fast Access Storage. . . .
Registers. . . « » + « & o
Computer Timing.

System Diagram . . .
CONTROL SYSTEM. . . .« .« «+ .

MONROBOT XI COMMAND DESCRIPTION
Genperal. « . i o« & e a s

Format . . « & o' 3 % % % 5w

iii

ii

=

o O B B W

10

. 10
« 11

11
12

. LB
. 13

14

15

. 15
. 15

o oy

ARITHMETIC INSTRUCTIONS

BAd i o o2 o s
subtraect ., . .
Detract ., . i « s
MEIBIplY . &+ & « %
Store . . v o a
1084 o « « « «
Interchange . .

Extract « & v s &

CONTROL INSTRUCTIONS. .

Program Sequencing
Jump Unconditional
Jump Mark.
Jump on Zero . . .

Jump on High Order

I Np UT-OUTPUT (] - . .

General.
Imput. o « « &« % =
FA 5 Output.

Instruction Output

SHIFT COMMANDS.

General.

Decimal Shift Left

Decimal Shift Right.

Binary Shift Left.

Binary Shift Right

.

16
17
18
19
21
22
23
24

25
26
28
29
31
33

35
35
37
39
41

43

. 43
. 46

48
49
50

Binary Left End Around Shift . .

Binary Shift Right Maintain High Order

INTERVENTION INTERROGATE.
SPECIAL COMMANDS. . . « « « « o« « o &
Clear FA 6 . . - - L] . . L] . L . -

Clear FA S . i + 5 5 s« % & s =

Set FA 6 to all Ones
No Operation « « « « + .« .
S t op L] - . - L] L] . . L] L] L - L] L]
CONTROL PANE L L] L] . L] - L] . - L] Ll L -
Control Switches ., + =«

Control Register Lights.
Input-OQutput Lights.,
Intervention Interrogate Switches.
Reset Bntry. « « & s o o o o = o o
Starting Automatic Program . . .

Boot-Strap Techniques.
Boot=Strap . . « « « « ¢« ¢ ¢ &+ o .

Computer Aid to Program Checking

OPERATION TIMING.+ « « « « + «

Minimum Access Coding.
One Drum Revolution Operations

Case I (one drum revolution) . .

Bit

Minimum Access for More Than One Drum Revolution

Case II (two drum revolutions) . .

51
52

53

56
57
58
59

60

. 61

62
63

64

65
66
66
67
68

. 70

. 72

72
73
73
74
74

o R R

Case II1 (three drum revolutions). 74

INPUT=OUTPUT TIMING . . ¢ & ¢ ¢ ¢ « ¢ o o o s o a s o o » 15

APPENDIX I

Command and Access Time. « o o« « =« + » - 76

APPENDIX II

Constant Generation. & & + « ¢ o « « s « « 18

APPENDIX III

Table of Powers of 2 . : & & « o /5. 5% 5. .a.% 3« » 82
Typewrdter CodeB . . . ¢ &+ ¢ ¢« o 4 o = » v w o «'» = 83
APPENDIX 1V

Binary to Decimal and Decimal to Binary Conversion . 86

APPENDIX V
2,048 Word Drum Address Structure 88

O

)

GENERAL

Monrobot Mark XI is a small, general purpose, digital,
transistorized computer. Its number system is straight bi-
nary. The program is internally stored along with data on a
magnetic drum. The computer addressing system is of the
type known as one address. The magnetic drum contains 1,025
registers for computer word storage. Eight of these regist-
ers are called fast access registers. In addition to being
fast access registers, some fast access registers have spe-
cial computer functions. Each register in the computer stor-
age system can hold a computer word of 32 binary bits. A
computer word can be used to hold either data (numeric or
alpha-numeric) or instructions. If a word is used for hold-
ing instructions, it will hold two computer instructions per
word because each instruction is 16 binary bits. If a com-
puter word is used to hold numeric data, the word can hold
30 binary bits of information (equivalent to nine decimal
digits), a bit for use as an overflow test position, and a
bit to indicate whether the data is positive or negative.
Negative numbers are represented in the computer in two's
complement. If a word is used for alpha-numeric storage, it
can contain either five characters (each character equal to
six binary bits) or six characters (each character equal to
five binary bits). Figure 1 gives a representation of the
computer words.

Input

Input to the computer can be in any code. From one to
three devices in any combination may be used in any Monro-
bot XI program. The input devices are typewriters, punched
paper tape readers, punched card readers, teletype machines,
and sixteen-key numeric keyboards.

Output

Output from the computer can be in any code. From one
to three devices in any combination may be used in a Monro-
bot XI program. The output devices are typewriters, paper
tape punches, paper card punches, and teletype machines.

The output devices may be operated by the program either in-
dependently or simultaneously in any combination.

MONROBOT MARK XI COMPUTER WORDS

~
mmmmm%%m%mmmmmnmwmmmumg876543214g??
A 16 bits B 16 bits Instruc- -
tion Word
i Numeric
n|F w
Six-bit -
6 bits 6 bits 6 bits 6 bits 6 bits Chisncter
Five-bit
5 bits | 5bits | 5 bits | 5bits |5 bits |5 bits | o Rl
-
Figure 1
-
—

SEXADECIMAL SYSTEM

Although the computer is completely binary and all data
within the computer is binary, representation of computer
words external to the computer is in the sexadecimal or base
16 system. There are two reasons for this representation.
The first reason is that it is easier to recognize and write
computer words in sexadecimal than in binary. The other rea-
son is that nonautomatic input to the computer uses the sexa-
decimal system.

The sexadecimal system has 16 as its number base, just
as the decimal system has 10, the octal system eight, and
the binary system two. Table 1 gives the decimal, binary,
octal, and sexadecimal equivalences.

Decimal Binary Octal Sexadecimal
0 0000 ? 0
1 0001 - _ 1
2 0010 2) 2
3 0011 g) 3
4 0100 4
5 0101 5 5
6 0110 6 6
4 0111 v i
8 1000 i ! 8
9 1001 1 _ 9. —
10 1010 2 é
11 1011 13
12 1100 14 U
13 1101 5 \'
14 1110 6 W
15 1111 17 X
Table 1

Since there are 16 different characters in the sexa-
decimal system, the six characters over the decimal 10 have
to be assigned names and symbols. The naming of the char-
acters is arbitrary. In Monrobot Mark XI these characters
were assigned the symbols and names of the English alpha-
betic letters S through X respectively.

As can be seen from Figure 2, each sexadecimal char-
acter represents four binary bits of information. This
representation is called a tetrad of information. As each
word in the computer holds 32 binary bits, then each word is
comprised of eight tetrads.

Tetrad Numbering

Tetrads are numbered from O to 7; bits are numbered by their

In referring to positions within a computer word, a com--
bination of tetrad numbering and binary bit weight is used.

binary weight within the tetrad which can be 8, 4, 2, or 1.
Figure 2 gives the tetrad and binary numbering for the com-
puter word.,

313020282726252423222120191817161514131211109 8 7 6 6 4 3 2 1 0

Tetrad 7

Tetrad 6

Tetrad 5

Tetrad 4|Tetrad 3

Tetrad 2

Tetrad 1

Tetrad O

8§ 421

4

8421

8 4 2 1i

8421

8 4 21

84241

8421

ferred to,
weight.

In the manual,

to as T7-8.

Conversion

Figure 2

if a bit position or positions are re-
they will be denoted by the tetrad number and
For example, the high order bit (231) is referred

This method of numbering the tetrads assigns to each
tetrad position its positional exponent, to the base 16, in
a sexadecimal number.

Tetrad

QoUW HO

Conversion from decimal to binary and binary to decimal

Base 16

160
161
162
163
164

165
166
167

Base 2

Table 2

Table 2 gives the equivalent values
for each tetrad position.

Decimal Equivalent

1

16
256
4096
65536

1048576
16777216
268435456

external to the computer becomes a matter of finding the

powers of 16 in a number and multiplying those powers by the
binary weights of the power.

easily this is accomplished.

Two examples below show how

Powers
of 2

Tetrad
Number

Binary
Weight

Example 1:
Convert the binary number
. 0000 0000 0000 0000 0010 1001 1101 1010

to decimal. This number is written in sexadecimal as
P00029VS. Conversion involves selecting from the table the
decimal equivalents of the powers, multiplying by the binary
weight of that power, and summing the individual results.

Decimal Binary
Tetrad Number Equivalent Weight Total
7 0 0 0
4] 0 0 0
5 0 0 0
4 0 0 0 :
3 2 4096 2 8192
2 9 256 9 2304
1 \' 16 13 208
0 S 1 10 10
10714

The result is 10714, the decimal equivalent of the num-
ber.

Example 2:

Convert the decimal number 10714 to binary. For con-
version from decimal to binary, it is necessary to determine
the binary weights of the powers of 16 that are in the deci-
mal number. This is done by dividing the powers of 16 into
the number. The quotient of each division gives the binary
weights for that power's tetrad position. The remainder
gives the value that is used by the next lowest power to ob-
tain its binary weight. This process continues until the
zero power or tetrad position is evaluated.

Power Remainder Quotient Tetrad
268435456 10714 | O 7
16777216 10714 O 6
1048576 10714 L O S5
65536 10714 | O 4
4096 10714 | 2 3
256 2522 | 9 2
16 218 |13 1
1 i 10 110 0

The result of the conversion is 000029VS when the sexa-
decimal equivalents are substituted for 13 and 10. Convert-
ing the sexadecimal number to binary is now a matter of sub-
stituting from Table 1.

These methods give reasonably easy and fast conversion

between the number systems. If a Monroe automatic desk calcu-
lator is used, this process becomes extremely simple.

Instructions

Instructions in the Monrobot Mark XI are 16 bits or
four tetrads long. Therefore, one 32 bit register can hold
two instructions., The 16 bits in an instruction word are
divided into a command part of six bits and an address part
of 10 bits. In the case of instructions that do not have an
address, the entire 16 bits are referred to as a command,
Figure 3 shows these two cases.

1514 131211 109 8 7 6 5 4 3 2 1 0

4———— Command — » | 4 Address ————»p

Tetrad 3 Tetrad 2 Tetrad 1 Tetrad O

15 14 13 1211 109 8 7 6 5 4 3 2 1 0

- —- Command »

Tetrad 3 Tetrad 2 Tetrad 1 Tetrad 0

Figure 3

Instructions are written by the programmer not as bi-
nary bits but as tetrads. Writing in this manner does not
cause any trouble except where the break between command
bits and address bits occurs in tetrad 2. 1In this case
sexadecimal values to three refer to the address portion;
values above three have also a command portion.

The two instructions per register are referred to as
the A step and the B step respectively. The machine always

executes the A step first and then the

struction format.

B step. It is never
possible to branch to the B step. Figure 4 shows this in-

31302928 2726252423222120191817161514131211109 8 76 543 21 0

Command Address Command Address

Tetrad 7|Tetrad 6fTetrad S5|Tetrad 4[Tetrad 3

Tetrad 2|Tetrad 1|Tetrad 0

Step A

Step B

Figure 4

Table 3 gives the coding in sexadecimal and binary for
the instructions that Monrobot Mark XI has in its repertory.
The binary coding is for background information to the pro-
grammer only. When these instructions are explained in de-
tail later in the manual, only the sexadecimal coding will
be given. The commands are divided into two categories con-

sisting of those commands which require storage addresses
and those commands which refer to nonstorage operations,

as, lnput-output and shitting commands.

such

i hini

r—_—

S——

.

A N R S R i v i

MONROBOT MARK XI COMMANDS

Binary Sexadecimal
1514131211109 8 76 54 3 210 3 21 0 Tetrs
Detract 0 0010 0«———Address »|L ADR
Multiply 010100] T 5 A DR
Store 101100 TA DR
Interchange '1.100 00 UA DRI
Load 1010 0 VADR
Subtract 111000 WADR
Add 1~1.0 1.0 0 v ¥ XADR
Extract 11110 1<+———Address——»{|[X A DR [*
Jump 00110 O«———Address——»| |3 A DR |
Jump Mark 00110 1! 3ADREPK
Jump Zero 011000) & 6 ADR
Jump High 1 01110 0a——Address——» A DR
Input 0 01 Oi2ddress 0,0 O 0 O O O O O} |2 A O O «
Output 1 01 OAddress010 1 1 1 11 T1I|[SBY7X
Instruction Output 1 0 1 O/Address lle— Character—>| [SBAC C |
-
Multiply by 10 10000000 Scale Factor S8 0PN
Divide by 10 10001000 4% & 8PN
Binary Shift Left 1001000 O 90PN
Binary Shift Right 10011000 98PN
Binary End Around 10001100t 8 Uup _—
Binary Shift Right Neg. 0 1 040 Sec t 9 UPN
Intervention Interrogate [1 1 0 0 0 1 O Oi4—Addresg-——>» 4 A D |
Clear FA 6 1100010100000000J]uS500
Clear FA 5 101000000000 0000]|S0O0O0O0 >
Set FA 6 1100010000000000]|jU400
Stop 0 0000000000000 O0O0O|j[00O0O0O0
*These instructions add 400 to address to obtain sexadecimal -
coding.
AADR = 00 0 — 0 0 5
ADR = Address =000 — 3XX
A = Input Address = 2, 4, 8
B = Output Address = 0, 2, 4, 6, 8, S, U, W
B + 1 = Instruction Output =3, §, 7, 9, T, Vv, X
cC = Any Eight-bit Character
PN = Shift from 1 —» 8
AD = Intervention Interrogate Switch 1 —p 8
Table 3
~

NUMBER SYSTEM

The Monrobot Mark XI is a fixed point binary integer
computer. The binary point is located to the right of the
number (20 position). All numbers used in the computer are
treated as integers. Numbers less than one must be scaled
so that they are greater than one. Sgecial shift commands
are provided to aid in scaling. These shift commands also
assist in the decimal-to-binary and binary-to-decimal conver-
sions which must be programmed. Appendix 4 gives methods
for conversion using the Monrobot XI shift commands.

The maximum size of a number in the computer is 32 bits,
which.is equivalent to the decimal number 232 = 1 (4294967295).
The practical size of a number is 30 bits, which is equiva-
lent to the decimal number 230 - 1 (1073741823). The latter
is the number size which will be used when arithmetic opera-
tions are discussed in this manual. Negative numbers within
the computer are maintained in two's complement form. The
high order bit (T7-8) of every numeric register is treated as
the sign position. If this bit is zero, the number is re-
garded as positive. If this bit is one, the number is re-
garded as negative. In the arithmetic operations of addi-
tion, subtraction, and multiplication, the results will be
signed correctly if the operands do not exceed 30 bits of in-
formation.

Overflow

Numbers which exceed 32 bits as a result of an opera-
tion are sald to overflow. The computer gives no automatic
indication of this overflow. The programmer must test for
overflow through the program and prevent numbers from becom-
ing large enough to exceed capacity. When 30 bits are used
as the number size, the T7-4 bit position (next to high
order) is used as the overflow test position. This position
must always have the same value after an arithmetic opera-
tion as the sign position (T7-8) or the result exceeds 30
bits in absolute value. In effect, if the result is posi-
tive, T7-4 must be zero; if the result is negative, T7-4
must be one. Testing whether overflow has occurred is a
function of the programmer through the program. Overflow ex-
ceeding 30 bits cannot be permitted because subsequent over-
flows will change the value of the sign bit from zero to one
and one to zero and exceed the capacity of 32 bits. Figure 1
gives a representation of the number word in Monrobot XI.

STORAGE SYSTEM

The Monrobot Mark XI storage system is a magnetic drum.
The drum rotates 5,124 times per minute making a drum revolu-
tion equivalent to 11.7 milliseconds. The magnetic drum has
located on it 1,025, 32-bit registers. Of these registers,
1,017 are in what is called general storage and are avail-
able once each drum revolution. The other eight registers
are in what is called fast access storage and are available
16 times per drum revolution.

General Storage

The 1,017 general storage registers are divided into
16 tracks along the axis of the drum. Each track is divided
into 16 parts called sectors; within each sector are four
registers called phases. Figure 5 shows the general storage
drum system. -

< Tracks . __
; e~
01234561789S ?:U vV w X/’,____\\\\
] 0 W ~
1 T BEED
2
3 4 Phase et
4
S 5
e 6 s
c 7
t 8
o 9 -
r S
S >'T
U
A
W ~
X
Figure 5
Addressing a general storage register requires 10 bits,
Four bits denote the track, four bits indicate the sector on
the track, and two bits indicate the phase within the sector.
Figure 6 shows how the address bits are divided within an in-
struction word.
-

- 10 ~

1514 131211109 8 7 6 5 4 3 2 1 0
I] i

Command 4————— Address »
| | |

Phase

Sector

Track

Figure 6

Since all registers are addressed in sexadecimal coding,
the programmer does not concern himself with the binary cod-
ing of the address., For gencral information, an example of
sexadecimal address coding and its breakdown into the binary
address coding is given below.

General storape register 767 in decimal is 2XX in sexa-

decimal; 2XX = 1011111111 in binary. This register is lo-
cated in track T (101l) sector X (1111) and phase 3 (11).

Access Time

Every general storage track has a device called a read-
write head for obtaining data from a register and recording
data into a register. Iach sector around the track is pre-
sented to this read-write head once every drum revolution.
When an instruction calls for a general storage address, the
computer cannot read from the register or write into the reg-
ister until the sector in which that register is located is
under the read-write hcad. The time it takes from when the
instruction is given to the time when the sector is avail-
able is called access time. Access time can range from zero
sector times (sector i1s under read-write head) to 15 sector
times (sector is a complete drum revolution away). Average
access time to general storage registers is eight word times,

Fast Access Storage

The magnetic drum has two tracks which hold four reg-
isters each., These registers are called fast access reg-
isters because they are available cvery scctor time (16
times a drum revolution) rather than once a drum revolution

as in the case of general storage. Of these eight registers,
seven are addressable by the program, one (the instruction reg-
ister) is automatically addressed. Some of the fast access
registers, in addition to having the normal functions of
storage registers, have special functions in the computer,

A brief description of these registers is made below; a com-
plete description is made in the command definition sections.

Registers

The Instruction Register which is automatically ad-
dressed holds the next two instructions that the computer
may execute.

Fast Access 6 (address 0 0 6) performs the function of
the accumulator. It holds one of the operands and most of
the results in arithmetic operations. It receives the input
character in input operations, holds the high order portion
:f the product in multiplication, and the remainder in de-

raction.

Fast Access 5 (address 0 0 5) holds the low order por-
tion of the product in multiplication, the number of detrac-
tions in the detract operation, the output character in the
output operation, and is part of the end around shift.

Fast Access 4 (address O 0 4) holds the multiplicand in
the multiply operation and the detractor in the detract opera-
tion.

Fast Access 2 (address 0 0 2) receives the contents of
the instruction register in the jump mark instruction.

Fast Access Registers 3 (address 0 0 3), 1 (address 0 0 1),
0 (address O O 0) have no special functions and can always
be used as storage registers. Figure 7, which is the system
diagram of Monrobot Mark XI, shows the flow of information
between these registers and the rest of the computer,

Computer Timing

All timing in the computer is based on the drum revolu-
tion speed and the number of sectors in a revolution. Since
there are 16 sectors and a drum speed of 11.7 milliseconds,
a sector time is equivalent to .73 milliseconds. All com-
puter operations are measured in sector times. The minimum
instruction time is four sector times. The actual length of
time depends upon two factors: execution time and access
time. Execution time is che time necessary to execute the
command; access time is the time necessary to obtain the con-
tents of the addressed register. Appendix I gives data on
execution times for each command and page 72 gives rules for

minimizing access time.

-

T7 Té6 TS5 T4 T3 12 T1 TO

842\ BA2Z\1H42\ BA21BA216842| 842|842
i e T PR o o (- ek ey
: INSTRUCTION BT ISTER H |
RIS T e el OB |
! |
|

O e SR e e e e e mimy

|
T3 T2 TI To y

BA2|BA2)| 84218421 | !

o

CONTROL. REGISTER

1
I
| }
I
| Te T5 T4 T3 T2 T 0 |
‘ pA L) B4\ 8421842 184218421 842) BARN, | | 4 ¥
L L T T T lerdoeliaal Jfaesaly |
I'TFASTACLESSG ACCUMULATOR) :I,’T:HT 0 Ii-"% |
: b,1-2 s frae 2
| 114 o el bl
I il R e -PARTY - - INPUTCHAKACT!I I | l
I |{ CHECK | ‘ } I
| :l D)-2 i | '
Tl e R e
| | | l |
'L 705 %5 &' ta e 10 T0]| bl
[B421{8421 842184218421 8421642168421 ! e s :
L | | | I
(A T T T [T Teadenak i~ ——a=
} FAST ACCESS 5 :; A el
]
} T
| o
I o
Tk =i v e o N R OO
L FAST ACCESS 4 . | DRUM STORAGE
- —_—— —— — = — = — — — —= | L1 007-3xX

T T T R A O [™ eyt

FALT ACCESZ O+-G

o |
FAST ACCESS &2
e
COMMANDS

A B c N S Q
1~ LOAD I- STORE (NTLRCHANGE |.-JUMP 1-UECIMAL SHIF T BIGHT |-|HSTRUCTION
2-SUBTRACT b FAE& *FAW 2.-JUMP2ERD Z2-DECIMAL SMIFTLEFT o TRUY
5.-ADD I*DETRACT m=0+G 3-3uMP T7.8527 1-BWARY SHIFTRIGAT 2- FA S OUTPUT
4-EXTRACT 2-MuLTiPLY 4-JUMP MARK 4. BWMAEY SWIFYLEFRT

5-LWVILE By 2"

1 M C-CLEAR FAG

=INPUT - INSTRUCTION SEQUENCE TENIKENORATE Sp e

.- EM D AROUND SHIFTY

MONROBOT MARK X\ SYSTEW DIAGRAM

FIGURE 7

CONTROL SYSTEM

The control system for iMonrobot Mark XI allows instruc-
tions to sequence automatically. It consists of two reg-
isters: the control register and the instruction register.
Collectively, these two registers are called the control
loop.

The control register's function is to decode the com-
mands and addresses which the computer will execute; the in-
struction register is fast access storage for the control
register. The control register holds one instruction of
four tetrads; the instruction register holds two instructions
of four tetrads each. All instructions must be transferred
to the instruction register from storage registers before
they can be decoded in the control register. The means of
loading the instruction register are the jump instructions.
Further description about both the control system and jump
instructions will be given in the jump commands section.

Figure 8 shows the control loop and information flow
within it.

4
4

|

T1 TO_r~—- T3 | 22 PriTo
4

Instruction Register | g
Command Address

Control Register

T7| T6 | TS |T4 |T3 |T2

Storage
000 -~ 3XX ////

Figure §

- J4 =

MONROBOT XI COMMAND DESCRIPTION

General

For this manual Monrobot XI commancs have been divided
into two groups, namely, commands that require a storage ad-
dress and commands that do not require a storage address.
Each of these two groups has again been subdivided. Address-
able commands are either arithmetic or control commands.
Nonaddressable commands are either shifting commands or
input-output commands. Arithmetic commands will be described
first, then control, input-output, and shifting commands,

Format

Each command will be described in sexadecimal notation.
The following format will be used.

Conmmand English words for command.
Code Sexadecimal coding of command.
Instruction Sexadecimal code of command and variations to

command., Variations are mnemonic with range
of variations written on the right.

Fast Access This will give the fast access registers which
Reglister the command uses or may affect by changing the
values of these registers after the operation.
Description English language description of command. The
term FA used in the description refers to ftast
access.
Example This gives a coded example of the command

with values in the affected registers both
prior to the operation and subsequent to the
operation. These values are in decimal and
sexadecimal notation.

Command Add

Code X = = =

Instruction XA DR ADR=000— 3XX

Fast Access Register

0 06

Description

The add command adds the contents of the addressed stor-
age register to the contents of FA 6 (accumulator) and
places the sum in FA 6 (accumulator). The addressed storage
register is unchanged by this command. Negative and posi-
tive numbers can be added, and the correct algebraic result
will occur. Carries exceeding 30 bits will affect the over-
flow test position (T7-4), carries exceeding the overflow
test position will affect the sign position (T7-8), and car-
ries beyond this position are lost.

Example
Instruction X003
Register Decimal Sexadecimal
Before Add 003 4096 1000
006 - 256 100
After Add 003 4096 1000
006 4352 1100
Instruction X006s6
Before Add 0 06 999999999 3T9SU9XX
After Add 0 06 1999999998 773593XW

This example shows how overflow affects the overflow
test position.

-l6 -

S = g

ARITHMETIC XINSTRUCTIONS

Command Subtract
Code W= ==
Instruction WADR ADR=000—33XX

Fast Access Register

006

Description

The subtract command subtracts the contents of the ad-
dressed storage register from the contents of FA 6 (accumu-
lator) and places the remainder in FA 6 (accumulator). The
addressed register is unchanged by this command.

Both negative and positive numbers can be subtracted,
and the correct algebraic result will occur. Negative re-
mainders will be expressed in two's complement. Borrows ex-
ceeding 30 bits will affect the overflow test position
(T7-4), borrows exceeding the overflow test position will af-
fect the sign position (T7-8), and borrows beyond the sign po-
sition are lost.

Example
Instruction W1l13U
Register Decimal Sexadecimal
Before Subtract 13U 25 19
0 06 52 34
After Subtract 13U 25 19
006 27 1T
Instruction W 2XX
Before Subtract 2 X X 346 158
006 345 159
After Subtract 2 XX 346 158
006 - 1 XXXXXXXX
R L

Command Detract
Code l = - =
Instruction 1 ADR ADR=000—>3XX

Fast Access Registers

004, 005, 006

Description

The detract command transfers the contents of the ad-
dressed register automatically to FA 4. It then subtracts
the contents of FA 4 from the contents.of FA 6 (accumulator)
until FA 6 is less than the contents of FA 4. For every
such subtraction that is made, a one is added to the low
order (TO-1) position of FA §. The contents of both FA 6
and FA 4 are considered as positive numbers., If the con-
tents of the addressed register are zero when this command
is used, the detract operation will not cease unless the com-
puter is reset. The contents of the addressed storage reg-
ister are unchanged by this command,

Examples
Instruction 106 3
Register Decimal Sexadecimal
Before Detract 0 6 3 5 5
006 321 141
005 0 0
00 4 652 28U
After Detract 0 6 3) 5
006 1 1
0035 64 40
004 5 5

- 18 -

Command Multiply
Code B e e

Instruction SADR ADR=000U—>» 3XIX

Fast Access Registers

004, 005, 006

Description

The multiply command transfers the contents of the ad-
dressed register automatically to FA 4. It then multiplies
the contents of FA 4 by the contents of FA 6 (accumulator)
to develop a 64-bit product. The low order 32 bits of this
product are in FA 5, and the high order 32 bits are in FA 6.
If the product T8 negative, it will be represented in two's
complement in both FA 5 and FA 6. The contents of the ad-
dressed register are not affected by this command.

Examples
Instruction 523X
Register Decimal Sexadecimal

Before Multiply 23X 350 15W
006 15 X
005 6721 1841
00 4 621 26V

After Multiply 23X 350 15w
006 0 0
005 5250 1482
004 350, 15w

Instruction 5006

Before Multiply 0 06 65536 10000
005 216 v8
00 4 1248 4W0

-9 -

|

After Multiply

Instruction

Before Multiply

After Multiply

Register
006

005

0

© © © W W
© © © == =
00 O = =

©C © O w

0

© © © =

4

S o 0 =

- 20 -

Decimal
1
o
65536

999999999
299999099
0

10

999999099
232830643
808348673
999999999

Sexadecimal

1
0
10000

3T9SUSXX
3T98U9XX
0o
8

3T9SU9XX

VWOT6T3
302w6U01
3T9SUDXX

Command Store

Code W e
Instruction TA DR ADR=000 — 3 XX

Fast Access Registers

006

Descrigtion

The store command replaces the contents of the ad-
dressed storage register with the contents of FA 6 (accumu-
lator). FA 6 is unchanged by the store command. The store
command is the only command that will change the contents of

register 0 0 7 —» 3 X X.

If the address of the store instruction is 0 0 6, the
contents of FA 6 will replace the contents of FA 4, but the
contents of FA 6 will remain unchanged.

-

Example
Instruction T323
Register Decimal Sexadecimal
Before Store 323 625 271
006 15630 3vow
After Store 323 15630 3vow
006 15630 3vow

e

Command Load
Code Voo
Instruction VADR ADR=000— 3 XX

Fast Access Register

006

Description

The load command replaces the contents of FA 6 (accumu-
lator) with the contents of the addressed storage register.
The addressed storage register is unchanged by this command.

Example
Instruction voeo
Register Decimal Sexadecimal
Before Load 060 345189 54465
006 o 0
After Load 060 345189 54465
006 345189 54465

Command Interchange

Code o e s

Instruction UADR ADR=000—00G6

Fast Access Registers

0 0 6 and addressed FA register

Description

The interchange command replaces the contents of the
addressed fast access register with the contents of FA 6
(accumulator) and places the contents of the addressed fast
access register into FA 6 (accumulator).

If the address of this command is 0 0 6, the contents
of FA 6 will replace the contents of FA 4. However, the con-
tents of FA 6 will remain unchanged.

Example
Instruction U001
Register Decimal Sexadecimal

Before Interchange 006 25002 61SS

001 20 14
After Interchange 006 20 14

001 25002 618S

- B8 .

Command

Code

Instruction

Extract

X4 -~ -

X (4+4A) D R

Fast Access Register

006

Description

ADR=000 —3 3XX

The extract command compares the 32 bit positions in
the addressed storage register with the 32 bit positions in

FA 6 (accumulator).

Wherever a one occurs in corresponding

bit positions, a one is placed in that bit position in FA 6;
wherever a one is not present in both positions, a zero is

placed in that bit position.

is not changed by this command.

The addressed storage register

This command is a logical multiplication command.

Example

Instruction

Before Extract

After Extract

Instruction

Before Extract

After Extract

X563

Register

1
0

6

0

3
6

- B4 -

Decimal Sexadecimal
Not 11v7

Applicable X9

11v7

V1

XXXX0000
20093200

XXXX0000
20090000

CONTROL INSTRUCTIONS

Monrobot Mark XI has four control or jump instructions
which permit conditional and unconditional branching of pro-
gram control. Prior to describing the four jump instruc-
tions, a further description of the control loop will be
made to facilitate an understanding of instruction sequenc-
ing in the computer. Figure 9 shows ihe control loop which
consists of the control register and instruction register.

Y
\f

T7 | T6 | TS| T4 | T3 | T2 |T1 | TO T3 | T2 | T1| TO

Instruction Register
Conmand Addres

Control' Register

General

Storage ///////

Figure 9, Control Loop

The function of the control register is to decode in-
structions; the function of the instruction register is to
provide fast access storage for the control register. The
instruction register holds the instructions that will be exe-
cuted or have been executed. All instructions must be trans-
ferred to the instruction register from storage before they
can be executed by the control register. The jump commands
are the commands that do this transfer.

As can be seen from Figure 9, three instructions are
present in the control loop. Two of these instructions are
in the instruction register; one (currently being executed)
is in the control register. Of these three instructions one
must always be a jump instruction in order to load the in-
struction register with the next two instructions in the pro-
gram sequence.

- 25 -

.
F

N I R T R —

T o L ae

o ek

Program Sequencing

Program sequencing operates by the jump instruction
bringing the contents of the desired register into the in-
struction register, executing the two instructions in the
control register, and then automatically bringing the next
register in sequence into the instruction register unless
one of the instructions executed was a jump instruction.
This jump instruction would have loaded the contents of the
instruction registier with two instructions and started a new
automatic sequence.

Instruction Register Control Register

W
Y

A B J(ADR) ™

Figure 10.0

Y
Y

B J(ADR + 1) L———— A L—~J

Figure 10.1

v

v

J(ADR + 1) A 4 B J*-"—

Figure 10.2

b
>

Ay Bl P—_“" J(ADR + 1) }*‘“‘

Figure 10.3

4

e B

The Figures 10.0 through 10.3 show how Monrobot Mark XI
program sequencing operates. Figure 10.0 shows a jump in-
struction in the control register. This jump instruction
has loaded the instruction register with the contents of the
storage register addressed by the jump command. The com-
puter then automatically shifts the A step from the instruc-
tion register into the control register. The B step moves
up to replace the A step. The jump instruction has a one
automatically added to its address portion and is moved into
the positions vacated by the B step. Figure 10.1 shows this
operation. After the A step has been executed, the B step
is shifted into the control register. The augmented jump
command moves into the vacated B step positions, and the exe-
cuted A step into the jump position. Figure 10.2 shows this
operation. Once the B step has been executed, the entire
process is repeated with the control register being loaded
with the jump command with its address increased by one.
Figure 10.3 gives this operation. In this manner automatic
sequencing will continue unless either the A step or the B
step contains a jump instruction. This jump command will
load the instruction register as in Figure 10.0 and then
have its address augmented automatically to start a new auto-
matic sequence.

Although three instructions are constantly circulating
in the control loop, the only time a jump instruction is
written by the programmer is when the control sequence is to
be changed from being automatically sequenced by the computer.

On the execution of instructions from the instruction
register, the A step is always done first and then the B
step. It is never possible to alter this sequence. Fig-
ures 10.0 to 10.3 show this sequencing.

The jump command which does the automatic sequencing
is the unconditional jump. Any other jump commands which
may load the instruction register become unconditional jumps
in the control loop after they have loaded the instruction
register.

R

Command Jump Unconditional

Code 3 - - -

Instruction 3ADR

Fast Access Registers

Instruction

Description

The jump unconditional command replaces the contents of
the instruction register with the contents of the addressed
register. The previous sequence of instructions is inter-
rupted, and a new sequence starting with the A step of the

A

DR=000— 3 XX

addressed register is started. The contents of the ad-
dressed register are unchanged by this command.

Efample

Instruction 3200
Register

Before Jump 200
Instruction

After Jump 200
Instruction

Sexadecimal

v002T315
X001w216

v002T315
v002T315

~

Command

Code

Instruction

Jump Mark
34 - -

3 (44A) D R

Fast Access Registers

Instruction, 0 0 2

Description

ADR=000-— 3XX

The jump mark command replaces the contents of FA 2

with the contents of the instruction register and then re-
places the contents of the instruction register with the con-
tents of the addressed register. The previous sequence of
instructions is interrupted and a new sequence beginning with
the A step of the addressed register is started. The contents

of the addressed register are unchanged by this command.

- 899 o

Examples
Instruction 3612
Register Sexadecimal
Before Jump Mark 212 X00530XX
Instruction 320XX001
002 00000036
After Jump Mark 21 2 X00530XX
Instruction X00530XX
002 | 320XX001
Instruction 35XX
Before Jump Mark 1 XX v301TO001
Instruction W09Xx3213
002 00000000
After Jump Mark 1 XX V301T001
Instruction V301T001
002

w09X3213

The jump mark command permits program branching with mem-
ory of the program register which caused the program branch.
FA 2 contains this memory. The memory consists of the con-
tents of the instruction register when the jump mark command
was being executed in the control register. One of the in-
structions in FA 2 after the jump mark command is the executed
A step if the jump mark was the B step or the unexecuted B
step if the jump mark command was the A step of the program
register which contained the jump mark command. The other in-
struction is the automatic jump instruction which is always
present in the control loop. The address of this automatic
jump instruction is one more than the program register which
contained the jump mark. This automatic jump instruction
would have continued program sequencing if the juwmp wark in-
Struction had not been written as either the A or D step.
Since this jump is transferred to FA 2 by the juup wark com-
mand, any subsequent jump to FA 2 will retransfer program con-
trol to the program register after the program register which
contained the jump mark command. If the jump mark command was
the A step of the program register, the unexecuted B step
would be the first instruction performed when control was re-
turned to FA 2. The automatic jump which actually returns the
program to the desired sequence would be executed after this
step. If the jump mark was in the B step only the automatic
jump is executed when control is returned to FA 2.

It is not necessary to keep the marked instruction in
FA 2. The marked instruction can be transferred to any stor-
age register, allowing FA 2 to be used for working storage
or receiving more mark instructions. To return to the previous
sequence, the program would jump to the register where the con-
tents of FA 2 had been transferred.

The jump mark instruction makes possible effective use of
subroutines in Monrobot Mark XI. Entrance to the subroutines
is made through the jump mark instruction. Exit from the sub-
routines is a jump to the register where the mark has been
placed. The program then resumes its sequence at the instruc-
tion step after the jump mark instruction.

- 30 -

—-—

Command Jump on Zero

Code G - o

Instruction 6 ADR ADR=000— 3 XX

Fast Access Registers

Instruction

Description

The jump on zero command replaces the contents of the
instruction register with the contents of the addressed stor-
age register if the contents of FA 6 (accumulator) are equal
to zero. The previous sequence of instructions is inter-
rupted and a new sequence starting with the A step of the ad-
dressed register is begun.

If the contents of FA 6 (accumulator) are not equal to
zero, the program continues by executing the next instruc-
tion from the instruction register.

This command, whether successful or unsuccessful, does
not change the contents of ‘the addressed storage register.

Examples
Instruction 6 3 25
Register Sexadecimal
Before Jump on Zero 3 25 T0013096
lnstruction 3300X002
0 06 0
After Jump on Zero 325 T0013096
Instruction T0013096
006G (0]
481 -

P

Instruction 6 1 XX
Register Sexadecimal -.J
Before Jump on Zero 1 XX V2TTX001
Instruction 3205X005
006 12
After Jump on Zero 1 XX V2TTX001
Instruction 3205X005
006 12

Q

- 39 -

Negw¢x,

Command Jump on High Order 1
Code 7 - - -
Instruction 7 ADR ADR=000—> 3XX

Fast Access Registers

Instruction

Description

The jump on high order 1 command replaces the contents
of the instruction register with the contents of the ad-
dressed storage register if and only if the high order bit
(17-8) of FA 6 (accumulator) is equal to one. The previous
sequence of instructions is interrupted, and a new sequence
is begun starting with the A step of the addressed register.
If the high order bit (T7-8) of FA 6 (accumulator) is equal
to zero, the program continues by executing the next instruc-
tion from the instruction register.

This command, whether successful or unsuccessful, does
not change the contents of the addressed storage register.

Example
Instruction 7060
Register Sexadecimal
Before Jump High 1 060 U005X004
Instruction 3261T050
0 d 6 80000000
After Jump High 1 060 U005x004
Instruction U005X004
006 80000000
Instruction 7300
Before Jump High 1 300 X012T005
Instruction X0013310
006 00005602

- 88 -

Register Sexadecimal
After Jump High 1 300 X012T005
Instruction X0013310
006 00005602

In most cases this command can be thought of as a jump
on negative since all negative numbers must have a high
order bit. However, shift commands and the input command
also affect the high order bit position of FA 6 so that the
jump on high 1 is more general.

- B4 -

INPUT-OUTPUT

General

The Monrobot Mark XI input-output unit is the character.
Every time an input or output command is given, one char-
acter which may be up to two tetrads (eight bits) is either
read into the computer from an input device or written on
the output devices. The programmer is responsible through
the program for the conversion, transfer, and manipulation
of all characters so that they form computer words on input,
and for the inverse, that computer words form characters on
output. Special shift commands (described in section vgirift
Commands," page 47) are provided to aid the programmer in
performing this program function. Appendix 4 gives some con-
version and manipulation methods.

The Monrobot Mark XI system can have from one to three
input and output devices in operation in the same program.
Only one input device can read a character into the computer
during an input command; however, characters may be sent to
one, two, or three devices simultaneously during an output
command .

All characters read into or out of the computer have
parity bits. Parity is defined as odd parity. That is, the
sum of the one bits in each character must equal an odd number.
All characters read out of the computer have odd parity as-
signed to them. Input characters that do not have odd par-
ity are singled out to the program.

The position of bits in the input-out character is
represented differently when the character is within the
Monrobot Mark XI than when the character is external to the
device. Characters external to the Monrobot Mark XI have
the following form, where Lines A and C give the binary
weight of the bit position. Line B gives the numeric order
of the bits reading from right to left where P represents
the location of the parity bit.

A 8421|8421 Binary Weight
B 876 P43 21 Numeric Bit Position
C T1 TO Tetrad Position

e

Characters internal to the Monrobot Mark XI have the
following form where Lines A and C give the binary weight of

A 842118421
B 8§ P76[14321
Cc Tl TO

the bit position, Line B gives the position of the char-
acter bits of the external character when automatically re-
arranged by the computer for its internal use. The P posi-
tion is shifted to the T1-4 position and is automatically
set to zero. The T1l-4 and Tl-2 positions of the external
character are shifted to the T1l-2 and T1l-1 positions re-
spectively. The other positions remain exactly the same,
Figure 11 shows this rearrangement.

External Character

Interna; Character
Figure 11

This rearrangement allows most characters to enter the

computer as six bit characters and allows for maximum density

of packing characters into a computer register.

i B e

Command Input

Code 2200 Device 1
2400 Device 2
2800 Device 3
Instruction 2A00 A =2, 4, 8.

Fast Access Registers

006

Description

The input command replaces the contents of FA 6 (accumu-
lator) with the character that is at the input device speci-
fied by the instruction. The character which may be up to
eight bits (two tetrads) is placed in the low order (TO and
Tl) positions of FA 6. All other bit positions are set to
zero automatically with the exception of the high order bit
position (T7-8). This position is set to one if the input
character has even parity; it is set to zero if the input
character has odd parity. Figure 12 shows FA 6 for this

command.

T7 T6 TS T4 T3 T2 Tl TO

000/00O0DO0O|/0OO0O0CO|OO0O0O0O|0OO00O 0000|8076(4321

L parity Bit Indication Input Character

FA 6 on Input

Figure 12

The character read into the TO-T1l tetrads has its bit posi-
tions rearranged as indicated from its input format of
876P4321. When an input command addresses a device, the ad-
dressed device must have a character available or the com-
puter will wait at that input device until a character is
made available. No other computer operations can proceed
until the input command has been executed.

LA L

Example

Input from Device 3

Instruction 2800
Binary Character
Register Sexadecimal Representation
Before Input 006 XXX00000 01100001
After Input 0 06 00000031 00110001

Input from Device 2, Parity Error

Instruction 2400
Before Input 0 06 00000000 00000011
After Input 006 80000003 00000011

Input from Device 1, No Parity Error

Instruction 2200
Before Input 0 06 012W67X3 00010011
After Input 006 00000003 00000011

- 38 -

Command FA 5 Output Unow ™~ -

Code S 07X No Device. Clear FA 5

S 27X Device 1

S 47X Device 2

S8 1a.X Device 1 and 2

S 87X Device 3

S S 7X Device 1 and 3

S U7X Device 2 and 3

S W7X Device 1, 2, and 3.
Instruction

SB7X B=0, 2, 4, 6, 8, S, U, W.

Fast Access Registers

005

Description

The FA 5 output command takes the low order two tetrads
(TO, T1) of fast access register 5 and sends them to the de-
vice or devices specified by the T2 tetrad of the instruction.
The command then sets the contents of FA 5 to zero. The char-
acter read out of the computer has its bits rearranged by the
command to 876P4321 from the internal format of 8P764321.
The computer automatically computes a parity bit for output
if the Tl-4 bit of the two tetrads is zero. A parity bit of
one will be inserted into the character if the sum of the
bits is even; if the sum of the bits is odd, a zero will bhe
inserted. However, if the T1l-4 bit is equal to one, a one is
always inserted into the parity bit position on output.

If the output device or devices that the output character
is sent to are not ready or available to receive the character,
the computer will wait at these devices holding the character
until the device or devices are ready or available. No other
computer operation will proceed until the output command has
been executed.

Example

Output to Devices 2 and 3

Instruction

Before Output

After Output

SU7X

Register

005
005

Output to Devices 1, 2, and 3

Instruction

Before Output

After Output

S wW7X

005
005

- RO =

Binary Character
Sexadecimal Representation

00000013 00010011
00000000 00100011
00000041 01000001
00000000 00010001

Command Instruction Output Konsnd's

Code 3 - - Device 1

- - Device 2 TArk . oudpu
- - Device 1 and 2

- - Device 3

Device 1 and 3

- - Device 2 and 3

S
S
S
S
S
S
S - - Device 1, 2, and 3
S

" X < H © = Wuw
|
1

cc P 3, 5, 7,8, T, V, X

Instruction

CcC

00— XX

Fast Access Registers

None

Description

The instruction output command takes the TO and Tl tet-
rads of the instruction and sends them to the output devices
specified by the P tetrad where they become output char-
acters. The format of the output character is rearranged
automatically on output from 8P764321 within the instruction
to 876P4321 when actually sent to the output device. Parity
is not computed for this output; however, the programmer can
assign parity by making the P position equal to one if the
sum of the other character bits is even. The P position
should be zero if the sum of the remaining bits is odd.

If the output device or devices that the output char-
acter is sent to are not ready or available to receive the
character, the computer will wait at these devices holding
the character until the device or devices are ready or avail-
able. No other computer operations can proceed until the in-
struction output command is executed.

Example
Output to Device 1
Instruction B 36 2
Binary Character
Register Representation
Before Output None 01100010
After Output None 01010010

G A

Output to Device 1 and 2

Instruction

Before Output

After Output

S 701
Register
None

None

SAD

Binary Character
Representation

00000001
00000001

O

(bW

SHIFT COMMANDS

General
The Monrobot Mark XI has six types of shift commands.
These commands are designed to shift data and to aid in the

binary-decimal conversions. These shitft commands, which will
be described in detail below, are:

(1) Decimal Shift Left (multiply by 10l to 108).
(2) Decimal Shift Right (divide by 101 to 10%).
(3) Binary Shift Left (multiply by 21 to 28).
(4) Binary Shift Right (divide by 21 to 28).

(5) Binary Left End Around Shift (multiply FA 6 and
FA 5 by 21 to 28).

(6) Binary Shift Right Maintain H1§h Order Bits (di-
vide positive or negative by 21 to 28).

~ The shift commands always operate on the contents of
FA 6 (accumulator) and also in one case (binary left end
around shift) FA 5. Consequently, each shift instruction
has the following form :

8421|8421|8421|8421

T3 T2 T1 TO

Command Number of Shifts

where the T3 and T2 tetrads give the command code for the
tyYe of shift and the Tl and TO tetrads give the power
(nl to n8) by which the information is to be shifted.

The sexadecimal coding for each shift command is given
in Table 3. The sexadecimal coding for the number of shifts
desired is given in Table 4. A shift of zero units is not
permissible. If this shift is coded, the computer will
cycle endlessly until operator intervention resets the com-

puter.

- 43 -

The sign of numeric data is not preserved by the shitt
instructions with the exception of the binary shift right
maintain high order bits. The sign bit position (T7-8) in W
FA 6 is shifted by these commands exactly as all the other
bit positiomns.

Shift Command Coding

Command Code

T3 T2

Decimal Shift Left 8 0
Decimal Shift Right
Binary Shift Left

Binary Shift Right

Binary Left End Around

o ¢ v v w
a o o o

Binary Right Maintain High Order

Table 3

Power Shift Coding

Number Power Code '

T1 TO

)

0 N O O e W N
o & N = ©O O O
c O © © o & m

Table 4

) . In the description of the shift commands, tetrads T1 .
m TO are referred to as the PN tetrads.

Ol
4

Lmifec

et g 3

P

Command Decimal Shift Left (multiply by 101 to 108)

Code 8 0 - -

Instruction 80PN PN = 01, 02, 04, 08, 10, 20, 40, 80

Fast Access Registers

006

Description

The decimal shift left command multiplies the contents
of FA 6 (accumulator) by the power of ten specified by the
PN tetrads of the instruction. The powers of ten range from
one to eight. The result of the multiplication appears in
FA 6. If the result of the multiplication exceeds the 32
bit capacity of FA 6, the overflow is lost off the high
order end (T7-8).

While this command is used as a decimal shift left,
care must be exercised in its use. It is actually a binary
multiplication of FA 6 by powers of ten. When the shifted
number is decimal, the shift may produce bits in T7-4 and
T7-8 because of the 32 bit register capacity. If the
shifted number were evaluated subsequently, it would be
greater by the 231 and 230 bits than a number produced by a
true decimal shift.

Examples

Shift by 101

Instruction 8 001

Register Decimal Sexadecimal
Before Decimal Shift Left 006 10 S
After Decimal Shift Left 0 06 100 64

Shift by 104

Instruction 8 00 8
Before Decimal Shift Left 006 25 19
After Decimal Shift Left 0 0 6 250000 3v090

- 48 =

Shift by 103

Instruction 8 00 4

Register Decimal Sexadecimal
Before Decimal Shift Left 006 123456789 75TUV1S
After Decimal Shift Left 006 3197704712 TW991S08

The last example shows how the two high order positions
affect the shifted decimal number. Instead of obtaining
456789000, the decimal result 3197704712 was obtained in FA 6.

——

Command Decimal Shift Right (Divide by 10l to 108)

Code 8 8 - -

Instruction 8 8 PN PN = 01, 02, 04, 08,

Fast Access Registers

006

Description

10, 20, 40, 80

The decimal shift right command divides the contents of
FA 6 (accumulator) by the power of ten specified by the PN
The powers of ten range from
one to eight. The result of the division appears in FA 6.
If the result of this division exceeds the 32 bit capacity
of FA 6, the overflow is lost off the low order end of FA 6

tetrads of the instruction.

(TO-1).

Although the decimal shift right command is actually a

binary division by powers of ten,

are the equivalent of a decimal right shift.

Examples
Shift by 10-°

Instruction,

Before Decimal Shift Rjight

After Decimal Shift Right

Shift by 101
Instruction
Before Decimal Shift Right

After Decimal Shift Right

it produces results that

8810

Register Decimal Sexadecimal
006 1234567 12v687
006 12 00000U

8801
0 06 123 7T
006 12 U

Command Binary Shift Left (wultiply by 21l to 26)
Code 90 - -
Instruction 90PN PN = 01, 02, 04, 08, 10, 20, 40, 80

Fast Access Registers

00¢%

Description

The binary shift left command shifts the contents of
FA 6 (accumulator) to the left the number of binary posi-
tions specified by the PN tetrads of the instruction. The
number of positions range from one. to eight. The result of
the shift appears in FA 6. Zeros are inserted into the low
order positions vacated. If the result of the shifting ex-
ceeds the 32-bit capacity of FA 6, the overflow is lost off
the high order end (T7-8 end). This command is eguivalent
to multiplying FA 6 by powers of two from 21 to 2°.

Example
Shift Left by 24
Instruction 9008

Register Decimal Sexadecimal
Before Binary Shift Left 006 54 00000036
After Binary Shift Left 006 864 00000360

Shift Left by 28

Instruction 9080
Before Binary Shift Left 006 872394770 33XXT012
After Binary Shift Left 006 4289729024 XXT01200

- 49 =

Command Binary Shift Right (divide by 21 to 28)

Code 9 8 - -

Instruction 98 PN PN = 01, 02, 04, 08, 10, 20, 40, 80

Fast Access Registers

006

Description

The binary shift right command shifts the contents of
FA 6 (accumulator) to the right the number of binary posi-
tions specified by the PN tetrads of the instruction. The
number of positions can range from one to eight. Zeros are
inserted in the high order positions that the data has va-
cated. The result of the shift appears in FA 6. If the re-
sult of the shifting exceeds the 32 bit capacity of FA 6 (ac-
cumulator), the overflow is lost off the low order end (TO-1
end) . This command is equivalent to dividing FA 6 by powers
of two from 21 to 28,

Example

Shift Right by 21

Instruction 9801

Register Decimal Sexadecimal
Before Shift Right 006 3 00000003
After Shift Right 006 1 00000001

Shift Right by 26

Instruction 9820
Before Shift Right 0 0 6 805306368 30000000
After Shift Right 006 12582912 00U00000

- 50 -

Command Binary Left End Around Shift

Code 8 U - -

Instruction 8 UPN PN = 01, 02, 04, 08, 10, 20, 40, 80

Fast Access Registers

006,005

Description

The binary left end around shift command shifts the con-
tents of FA 6 (accumulator) and FA 5 to the left the number
of binary positions specified by the PN tetrads of the in-
struction. The number of positions can range from one to
eight. The data shifted off the high order (T7-8) end of
FA 6 is inserted into the positions vacated in the low order
(TO-1) end of FA 5; the data shifted off the high order
(T7-8) end of FA 5 is inserted into the positions vacated in
the low order (TO-1) end of FA 6.

This command is a circular shift where no information is
lost. ‘

Example
End Around Shift 8
Instruction 8uUs8o
Register Sexadecimal
Before End Around Shift 006 01234567
0035 80123456
After End Around Shift 006 23456780
005 12345601

i B =

Command Binary Shift Right Maintain High Order Bit
Code 90U -~ -

Instruction 9 UPN PN = 01, 02, 04, 08, 10, 20, 40, 80

Fast Access Registers

006

Description

The binary shift right maintain high order bit command
shifts the contents of FA 6 (accumulator) to the right the
number of binary places specified by the PN tetrads of the
instruction. The number of positions can range from one to
eight. The result of the shift appears in FA 6. Zeros are
inserted into the high order positions vacated if the high
order (T7-8) bit position was a zero; ones are inserted into
the high order positions vacated if the high order (T7-8)
bit position was a one. If the result of the shifting ex-
ceeds the 32 bit capacity of FA 6, the overflow is lost off
the low order (TO0-1) end.

This command preserves the high bits in shifting right
and so can be used with either positive or negative numbers.

Example
Shift Right 4 Maintain High Order
Instruction 9 U 08

Register Sexadecimal
Before Maintain Right Shift 006 01234567
Af.er Maintain Right Shift 006 00123456

Shift Right 4 Maintain High Order

Instruction 9 U 08
Before Maintain Right Shift 006 81234567
After Maintain Right Shift 006 X8123456

- 59 -

INTERVENTION INTERROGATE

The Monrobot Mark XI has eight control panel switches
which can be interrogated by the program to determine whether
the switches are set or not set. These switches can serve
as manual program interrupt controls or as program break
points. Testing a switch to determine its condition re-
quires two Monrobot XI instructions. One instruction is the
conditional jump described previously; the other instruction
is the intervention interrogate instruction which is de-
scribed below.

Each switch has a two tetrad address. Table 5 gives
the sexadecimal address coding for each switch. In describ-
ing the switch address in this manual, the symbols AD will be
used for switch address.

Switch Number Sexadecimal Address

T1 TO

1 0|1

2 012

3 0|4

4 0|8

5 1|0

6 210

y § 4|0

8 810

Interrogate Switch Coding

Table 5

More than one switch can be addressed for interrogation
by the intervention interrogate instruction. The address for
the switches becomes the sexadecimal sum of the different
switch addresses used. For example, the address for switch
numbers 2, 6, and 8 is 32.

Switch Number Sexadecimal Address

2 02
6 20
8 , 8 0

Address 2, 6, 8 = S2

- 54 -

-

Command Intervention Interrogate

Code U4 - -

Instruction U4ATD AD = 01, 02, 04, 08, 10, 20, 40, 80

Fast Access Registers

006

Description

The intervention interrogate instruction loads the 32
bit positions of fast access register 6 (accumulator) with
ones if the addressed switch is set; it loads the 32-bit
positions with zeros if the addressed switch is not set. If
more than one switch is addressed by the instruction, every
switch addressed must be set to obtain ones in the accumu-
lator.

This instruction should be followed by a conditional
jump instruction if the programmer wants the program to
branch on the condition of the switch.

Example
Test Switch 2, Switch Set
Instruction U402

Register Sexadecimal
Before Intervention Interrogate 006 00125671
After Intervention Interrogate 006 XXXXXXXX

Test Switch 6, Switch not set

Instruction U420

Before Intervention Interrogate 006 301XwW203

After Intervention Interrogate 0 06 00000000
- 55 =

SPECIAL COMMANDS

The Monrobot Mark XI has special commands to-set FA 6
and FA 5 to zero and to set FA 6 to all ones or minus one.
These are described in this section. Other special commands
exist to generate certain constants which may be useful to
the programmer. A list of these commands, constants which
they generate, and the rules for these commands are located
in Appendix 2.

Another special command is a do-nothing command which
allows the program to step without affecting any registers.

- 56 =

a1

Command Clear FA 6 (Accumulator)

Code U500

-Instruction U500

Fast Access Registers

006

Description

The clear FA 6 command sets the 32 bit positions of
fast access register 6 (accumulator) to zero.

Example
Clear FA ©
Instruction Us500

Register Decimal Sexadecimal
Before Clear FA 6 006 125 v
After Clear FA 6 006 0 0

= 57 =

Command Clear FA 5
Code soo00 also FO1X

Instruction S000O0

Fast Access Registers

005

Description

The clear FA 5 instruction sets the 32 bit positions of
fast access register 5 to all zeros.

Example
Clear FA 5
Instruction S000

Register Decimal Sexadecimal
Before Clear FA 5 005 801 321
After Clear FA 5 005 0 0

A ABH

Command Set FA 6 to all Ones

Code U400

Instruction U400

Fast Access Registers

006

Description

The set FA 6 to all ones command will set the 32 bit
positions of fast access register 6 to all ones. This ef-
fectively places a negative one in the register, since all
ones in two's complement is minus one.

Example

Set FA 6 to ail ones

Instruction U400

Register Decimal Sexadecimal
Before Set FA 6 to -1 006 0 00000000
After Set FA 6 to -1 006 -1 XXXXXXXX

- 59 -

Command No Operation

Code S100

Instruction S100

Fast Access Reglsters

None

Description

The no operation command does nothing to the program
except advance the program to the next step. It is used as
a fill instruction in either the A step or B step.

O THER Vo -oPs ARE

QLO0 OO WYGOIE
O 300 G400 L) 4«00
O 0O T4 00

&Y CC (&).\\o,.-e,% PSSPy UV B L)

cconms Jdse TS T
_,¥_l.cx,c41. c>%. 1 Y A .

T _4;x£h:£txl, La;fgj_i\ <
’“C5-C$v e GQC)I)6%XX,

= B0 =

)

Command Stop

/\
Code 00 - -
Instruction 00CC C C = any 2 tetrad character
Fast Access Registers
None
Description
The stop instruction halts all computer operations.
Data can be written in the TO and Tl tetrads to identify the
stop command.
/-\
(‘\
PN
f‘
o~
/\

-

CONTROL PANEL

The Monrobot Mark XI control panel allows for entry of
boot-strap programs, contains indicator lights, the interven-

tion switches, and the necessary control switches to turn
the computer power on and off.

panel face.

@ ©-6 . 0. 8. 6. O @

Figure 13 shows the control

Switch| |Switch||Switch| [Switch | |Switch||Switch||switch||switeh
1 2 3 4 5 6 7 8
Pover ON RESET LOAD HALT | START
8lal2(1 glal2 |1 g8lal2 1 glalz 1
T3 T2 T1 TO
Figure 13

The functions of each switch on the panel are described

below:

Row
Row
Row

Row

A is the

~

B is the

C is the

D is the

input-output lights.

intervention interrogate switches.

control switches.

control register indicators.

- 62 -

Control Switches

Each control switch is a two-position switch. The posi-
tion of the switch whether on or off is indicated by the
switch face being 1lit if on or unlit if off.

ON Switch

The ON switch controls the power to the computer. If
it is 1lit, the computer power is on. The initial depression
of the ON switch turns the computer on and clears the con-
trol register and instruction register to zero. It takes ap-
proximately one minute from the time the ON switch is de-
pressed before the computer is ready to process data.

RESET Switch

The RESET switch controls the automatic operation of
the computer. Any time the switch light is on, automatic
operations will not occur. This switch can be depressed at
any time during computer operation and computations will
cease and the control loop will be set to zero. Conse-
quently, this switch should be used with discretion.

LOAD Switch

The LOAD switch controls the transfer of data from fasu
access register 6 (accumulator) to the instruction register
when the reset switch is 1it. This switch provides for the
entry of program data to the computer when automatic opera-
tions have ceased. Depression of this switch has no effect
on computer operations if the reset switch is not 1lit.

HALT Switch

The HALT switch limits the automatic operation of the
computer to one instruction. If the HALT light is on, the
computer will process the instruction in the control reg-
ister and stop. Depression of this switch when the reset
switch light is on has no effect on computer operations.

The HALT switch's effect upon computer operations is canceled
by depressing the switch when the HALT light is on.

START Switch

The START switch initiates automatic computer operation.
Depression of the START switch causes the computer to do the
next instruction in the instruction register if the reset
light is on; if the halt light is on, the next instruction
in the control register will be performed. The START switch
light being on will indicate that the computer is in auto-
matic operation. Further depression of the START switch

- B3 -

will have no effect on computer operation. The START switch
light will remain on until automatic computer operations are
interrupted by the depression of the reset switch, halt
switch, or the use of the stop command in the program.,

Control Register Lights

The control register lights give visual indication of
the contents of the control register if the halt switch is
1lit. The control register will show the next instruction
that will be performed when the start switch is depressed.

As Figure 13 shows, the control register is com-
posed of 16 lights arranged in four groups. Each group
represents a tetrad in the instruction. A light is on when
the bit position of the instruction contains a one; it is
off when the bit position contains a zero. Thus the instruc-
tion corresponds exactly to the instruction as written by
the programmer except for the following four cases:

(1) Conditional jumps which are unsuccessful have the
T2-4 bit 1lit in addition to the instruction lights.

(2) Stop instructions have the T2-1 light 1lit.

(3) Typewriter input has the T2-1 light on while await-
ing an input.

(4) The binary left end around shift has the T2-2 light
on if FA 5 has a one in the T7-8 position prior to
the shift.

Input-Output Lights

The top row of indicators on the control panel are the
input-output lights. The three extreme left-hand lights are
for the three input devices; the three extreme right-hand
lights are for the three output devices. The light next to
the output lights is for parity indication. The eighth
light is a spare and does not have any use at present.

Input Lights

The input lights come on whenever the device associated
with the light is addressed by the program and no character
is available for input at that address. The light remains
on until a character is entered at that device.

= A e

Output Lights

The output lights come on whenever a device is addressed
by an output command and the output cannot be made to the de-
vice. Reasons why the output cannot be made are that the de-
vice is busy, i.e., the device has not finished with the pre-
vious character sent to the device, or that the device is not
available at the address specified. If more than one device
is addressed, the lights for all devices addressed will re-
main on until the output instruction to all devices addressed
has been accomplished.

Parity Light

The parity light comes on when the last character en-
tered had an even number of bits and an input device has
been addressed. The light will remain on until a character
has been entered at the addressed input device. The parity
light will not come on if a parity error occurs and an out-
put command is given prior to the command for reading an in-
put device. The manner in which the parity light functions
gives the programmer the option to light the light and indi-
cate parity error or to ignore the parity light and indicate
parity error in some other manner. It also allows the pro-
grammer to ignore parity errors for characters which do not
have parity such as five-channel characters.

Intervention Interrogate Switches

The eight switches in the middle of the control panel
are the intervention interrogate switches, They are numbered
from left to right as shown in Figure 13. Each switch has an
address by which the computer can address it. Figure 14
gives each switch and its address.

Switch Address

1 01

0 N o o e W N
@ P N = O ©O ©
©C ©O O O o w» N

Figure 14

- 65 -

The switches are two position. When the switch light
is on, tne switch will load FA 6 with ones when addressed;
when the switch light is off, the switch will load FA 6 with
zeros when addressed.

The numbering of the switches is for programming clari-
fication only. The numbers are not on the switch face, and
the switches can have any writing on them that is desirable.

Reset Entry

There are two modes of input to the Monrobot Mark XI
computer. These modes are program input and reset input.
Program input was described under the input command and oc-
curs when the computer is running automatically. Reset in-
put is nonprogrammed, fixed format and can only occur when
the computer is in nonautomatic operation. This occurs when
the reset light has been turned on either by a depression of
the reset switch or the computer program having a stop com-
mand .

Reset input is necessary to load initial (boot-strap)
programs and to start the computer at the desired program
step when automatic operation has ceased.

Reset input is possible only through the typewriter or
sixteen-key keyboard which is located at input address 2 (de-
vice 1). Consequently, this input address must always have .
either one of these two devices at this input address for
boot-strapping and for starting the computer. Reset entry
input has sixteen legitimate characters. These are the tet-
rads O to 9 and S to X. Each character in this mode of
entry is one tetrad or four bits. The characters are en-
tered into the TO position of FA 6 (accumulator). Every
time a character is entered, the contents of FA 6 are
shifted four binary places to the left and the character en-
tered is inserted into the cleared TO position of FA 6 (ac-
cumulator). Entering eight characters will fill FA 6; how-
ever, if more than eight are entered, only the last eight
entered will remain in FA 6. The characters prior to the
last eight are lost off the high order end.

If the typewriter is used as the reset input entry de-
vice, any character entered other than the legal sixteen
tetrads will create errors in FA 6. If this illegal entry
is made, all characters entered prior to the illegal char-
acter must be re-entered.

Starting Automatic Program

To place the computer in automatic operation when the
reset light is on, a jump instruction must be entered into
the control loop. This jump irstruction will contain the ad-
dress of the first instruction register in the sequence and
allow automatic operation to occur after this jump.

- 66 =

The jump instruction is entered by reset entry into
fast access 6 (accumulator). Depressing the load switch
transfers the jump instruction to the instruction register.
Depressing the start switch transfers the jump instruction
into the control register where automatic operation starts.
The computer now runs automatically according to the program
until either the reset switch is used or a stop command is
programmed. It is possible to start automatic operation
after a stop command without reset entry by depressing the
start switch providing the reset switch has not been oper-
ated.

Boot-Strap Techniques

When the computer is first used, it will not have any
programs stored on the drum. The method of getting data
onto the drum in this condition is called boot-strapping.
Boot-strapping involves using the reset entry, load, and
start switches. This method also can be used to check-out
programs, change the contents of registers, or observe the
contents of registers.

Boot-strapping involves loading the control loop with a
store instruction that will transfer the contents of FA 6 to
the register specified by the store instruction. This opera-
tion is a two-step one. The first step is reset entry into
FA 6 of the store instruction. Figure 15 shows the form
that this instruction should have. Step A of the register
is the store instruction.

T7|T6|T5|T4|T3|T2| T1|TO

Figure 15

When the load switch is depressed, the contents of FA 6
are transferred to the instruction register, leaving FA 6 un-
changed.

The second step is reset entry into FA 6 of the instruc-
tion that is to be boot-strapped into storage to serve as
program steps or data. These instructions replace the store
instruction in FA 6. Once the eight tetrads of the two
steps are entered, the start switch is depressed. The A step
of the instruction register is put into the control register
where the computer interprets it as a transfer of the contents

of FA 6 to the specified address. When this transfer is ac-
complished, the next step (the B step) is interpreted by the
control register; and since it is a stop command, automatic
operation stops. As many of these two-step boot-strap opera-
tions are done as are necessary to load the boot-strap program.
When the entire program is loaded, the computer is put into
automatic operation by entering a jump command containing the
starting address of the sequence in the first step and just
depressing the start switch in the second step.

Figure 15 gives a sample boot-strap program.

This same two-step operation is used whenever it is de-
sired to change the contents of the register.

This boot-strap program will first be loaded into stor-
age as a two-step operation. It then will be used to load
the rest of memory automatically as a one-step operation.
These two methods show in addition to boot-strapping the two
methods of automatic starting when the reset ligbt is on.

Boot-Strap

This program will be loaded into registers 0 0 7 to
0 0S. It then will be used to load program data starting
with register 1 0 0. The reset light must be on for the
boot-strap program.

Enter TO070000 Depress Load Switch
Enter 0000T100 Depress Start Switch
Enter T0030000 Depress Load Switch
Enter VO07X00S Depress Start Switch
Enter TO0S0000 Depress Load Switch
Enter TO073007 Depress Start Switch
Enter TO0S0000 Depress Load Switch
Enter 00000001 Depress Start Switch

Entry of those four program registers gives the program
in memory as shown in Figure 135.

Once the program has been entered, it may be started by
entering the unconditional jump command with O 0 7 as its ad-
dress and pressing the load and start switches. The program
is now in automatic operation. The first command is a stop
command which places the lMonrobot Mark XI in reset entry.

The eight tetrads of register 1 0 0 are entered into FA 6

- 68 -

PAGE

MONROBOT MARK XI PROGRAM SHEET
PROGRAM PROGR AMMER DATE
Leset Entry Program
REGISTER | STEP CONTENTS NOTES
0 A
B
1 A
B
2 A
B
3 A
B
4 A
B
5 A
B
(] A
B
0/0 |7 AlO |0 [0 |0 | Stop--allow for reset en*ry; press start switch,
BlT|1 |0|0 | Store in storage register,
0 0|s A|lV|0O | 0|7 | Instruction 7 — FA 6.
B| |0 |0|S | Add 00000001 to modify address.
00[° s Q| 0|7 | Return modified instruction to r ster 0 0 7,
B]13|0 (0|7 |Jump to 0 0 7 to await next entry.
0l 0]|s A10|0 | 0|0 | Constant one to modify address,
810(0 |0(1
T A
B
u A
B
v A
B
W A
B
X A
B8

MO-92

Figure 15
= B0 =

and the start switch is depressed. The computer advances
the program one step to store the data in register 1 0 O,

It then transfers register 0 0 7 to FA 6, adds one to modify
the storage address for the next register in sequence, and
restores the modified instruction in 0 0 7. It then jumps
to 0 0 7 to obtain the next register contents. This will
continue until all the program instructions in this sequence
are stored.

Computer Aid to Program Checking

The Monrobot Mark XI has machine features for aiding the
programmer in detecting errors in his program.

Foremost among these aids is the ability to execute one
instruction and stop. This one instruction operation is the
halt switch, which is located on the control panel. (hen
the halt switch has been used and the halt light is on, the
computer will do the instruction that is shown by the instruc-
tion lights when the start switch is operated. In this man-
ner the programmer can manually step through the program and
check it for correct sequencing.

The computer has also a fast access display box. When
this box is connected to an oscilloscope, the programnmer can
have displayed for his use the contents of the instruction
register, fast access 6 (accumulator), fast access 5, and fast
access 4. The box has a five-position switch labeled T31,
CL, ACC, MP, MC. The switch can be placed at any position or
moved from one position to another to show the contents of
the desired register. The T3l position is used to synchron-
ize the oscilloscope. Using this fast access display box,
the halt switch, and the control register lights, the pro-
grammer will be able to check the progress of the program.
The control loop and instruction register display instruc-
tions. FA 6, FA 5, and FA 4 give all that is needed to know
about the numerical data that enters into operation. All in-
formation displayed is in binary form.

The contents of any register can be brought to the oscil-
loscope for display when the computer is in the reset mode.
The programmer enters via reset entry a load command giving
the address of the register which he wishes to have displayed.
This instruction has the form of VA DR O 0 0 O, Depressing
the load and start switches will load the contents of the ad-
dressed register into FA 6 where it will be displayed on the
oscilloscope. The contents of any register can be changed
when the computer is in the reset mode. The programmer en-
ters via reset entry a store command giving the address of
the register he wishes to change. This instruction has the
form TA DROOOO. This is transferred to the instruction
register by the load switch. The data that is to be entered
into the addressed register is now entered via reset entry

= T e

: and the start switch is depressed. The data entered now re-
(\ places the data that was in the addressed register.

OPERATION TIMING

Monrobot Mark XI has sixteen sector times per drum
revolution in which to execute instructions. Every instruc-
tion takes at least four sector times. Instructions that
have reference to general storage have additional time
called access time; some commands require more than four
sector times for execution. Appendix I gives the execution
and access time for every instruction in Monrobot Mark XI.

As illustrated and explained in the section on the con-
trol instructions, Monrobot Mark XI executes two instructions
and then the automatic jump loads the instruction register
with the next two instructions. The automatic jump instruc-
tion then has its address augmented by one. The new instruc-
tion address is in the same sector of the drum for sixteen
consecutive jumps and then the sector is increased by one.
Consequently, the computer cannot select a general storage
instruction register more than once per drum revolution when
operating sequentially because a full drum revolution is re-
quired befiore the addressed sector is available again. This
means that sixteen sector times are available in every drum
revolution for executing two instructions and the automatic
jump. It also means that this is the maximum number of in-
structions that will be executed when operating sequentially
through the computer storage registers. (When instructions
are executed from fast access registers, four instructions
may be executed during a drum revolution because there is no
access time.) However, this maximum is not always accom-
plished because execution times and access times may exceed
the sixteen sector times available per drum revolution. In
order that three instructions may be executed per drum revo-
lution whenever possible, minimum access coding should be
used.

Minimum Access Coding

The purpose of minimum access coding is to make it pos-
sible for the computer to process three instructions per
drum revolution by locating operand registers and instruc-
tions so that they will be available with minimum access.

Of the sixteen sector times in each revolution, twelve are
necessary for execution of the three instructions. This
leaves an excess of four sector times which can be divided
among the three instructions. These sector times can be
used to spread the range of registers which the instruction
may have access to or they can be used as execution times
for instructions that take longer than four sector times for
execution such as multiple shifts.

R T ——————— R e e T e e L L - LWL . L W WL e

)

One Drum Revolution Operations

The rules for obtaining two instructions and the auto-
matic jump per drum revolution when either one or both in-
structions have operands in general storage are as follows:

N

I

A

B

sector address of automatic jump instruction
sector address of A program step

sector address of B program step.

Case I (one drum revolution)

The sector address of the A program step can lie be-

tween

N+ 4 and N + 8

or N+ 4% A SN+ 8 modulo 16.

The sector address of the B program step can lie be-

tween

A + 4 and

or A+ 4 £ B

A+ 38

£ A + 86 modulo 16.

The sector address of the B program step cannot exceed

N -4

or B+ 4 £ N modulo 165.

N modulo 16 is
by 16.

Example
N
Sector

3

the remainder after the sector is divided

A Step B Step
Sector(s) Sector(s)
7 o RN
7, 8 U, vV, W, X
7, 8, 9 vV, W, X
7, 8, 9, S W, X
7, 8, 9, S, T X

The example shows how the sectors used in A affect the
range of B and vice versa.

WL

Miniwmum Access for More Than One Drum Revolution

The following gives the rules for determining the drum
revolutions used when the operands exceed the range required
for one drum revolution per pair of instructions. =

Case II (two drum revolutions)

The two instructions will take two drum revolutions
when

A N + 9, B can be any sector

or B

N + 7, A can be any sector

and also when either Case I or Case III does not apply.

Case III (three drum revolutions)

N+ 10 A SN+ 15
and N+ 13 £ B &N+ 2
and 14 £ B~ A £ 3

or NLA4LEN+3
and N+ 13 £ BSX N+ 6
and 10 B - A £ 3,

If the A step or the B step or boil are instructions
which do not refer to storage, the same rules apply except
that A and B are computed in terms of sector times rather
than sector addresses. These nonaddressable commands are
the shift commands. The number of shifts made will deter-
mine whether the two instructions can be accomplished in a
drum revolution. Instructions which require more sector
times than can be accomplished in a drum revolution such as
multiply and detract are not optimized. After a multiply or
detract, optimization begins with the next instructions that
can be accomplished in a drum revolution.

- 74 -

)

INPUT-OUTPUT TIMING

The basic input-output operation speed is four sector
times. The limitation in the number of inputs and outputs
that can be made is the nature of the device from which
either input or output occurs. Inputs or outputs cannot be
made at a rate faster than the devices will accept characters.
If the commands are executed before the device is ready, a
condition called busy occurs. This condition causes computer
operation to suspend until the device is ready to accept the
character. Where possible, program steps should be scheduled
so that there is no computer waiting time to either input or
output.

Device Operation Time
Tape Reader 50 milliseconds
Tape Punch 50 milliseconds
Typewriter 100 milliseconds
1l6-key Keyboard 100 milliseconds
Teletypewriter 100 milliseconds.
Card Reader 62.5 milliseconds
Card Punch 62.5 milliseconds

. £

APPENDIX I

Command and Access Time

Command Operation Time Access Time
Detract 7 + 2n 0 - 15
Multiply 38 0 - 15
Store 4 0 - 15
Interchange 4 None
Load 4 0 - 15
Subtract 4 0 - 15
Add 4 0 - 15
Extract 4 0 - 15
Jump 4 0 - 15
Jump Mark 4 0 - 15
Jump Zero 4 0 - 15
Jump High Order 1 4 0 - 15
Input 4 0 if available
Output (FA 5 and instruction) 4 0 if available
Multiply by 10 4 + (m - 1) None
Divide by 10 4 + 2(m - 1) None
Binary Shift Left 4 + (m - 1) None
Binary Shift Right 4 + (m - 1) None
Binary End Around 4 + 2(m - 1) None
Maintain Righ Order 44 -1 None
Intervention Interrogate 4 None
Clear FA 6 4 0
Clear FA 5 4 0

- YB

'

‘ ~ Command Operation Time Access Time
 Bet FA 6 4 0
. No Operation 4 0
F step 2 0
. n = number of subtractions
m = number of shifts.

APPENDIX II

Constant Generation

The Monrobot Mark XI can generate certain numbers in
one instruction. These numbers can usually be used as con-
stants in the program. 1In the generation of these numbers,
FA 6 must always be cleared to zero prior to using a con-
stant generate instruction. If FA 6 is clear as the result
of a previous operation, this method of obtainiag a constant
can prove economical in both storage space and time. Each
constant is generated by a special form of a shift command.
Each instruction constant generator is given below with both
its decimal and sexadecimal equivalents.

A

W N

)

£

0 X T :

- Decimal
~1

@ =N o o s W

—10
16
20
30
32
50
60
64
70

80
-— 100
IZé
200
300
500
600

- 79 -

Constants Geppr‘pﬂﬁﬁggzy_

F | : -
‘I ¢ ‘- 1 .

l}i

f

g
Sexadecimal

1

O 0O 9 & o9 b W N

= - T T S S B~ B R R TR
® © » © & O & B © = & O

12U
1X4
258

AN

—————

1

i

q

Ingtructidﬁf
© 2 8604
v ﬂ\&

8704
8108
8208
8308
8408
8508

8608

8708
8110
8210
8310
8410
8510
8610
8710
8120
8220
8320
8420
8520
8620
8720
8140
8240
8340

Deciyai
700
800
000 —
000
000
000
000
000
000

0 =N O O W N M

10 000 =
20 000
30 000
50 000
60 -000
70 000
80 000

100 000 -
200 000
300 000
500 000
600 000
700 000
800 000

1 000 000~
2 000 000
3 000 000

- 80 -

Sexadecimal

1
1
1
3
4
7
9
S

2TU
320
3w8

AL

-
TT8

1388

1770

1T58
1X40
2710
4w20
7530
U350
WS60
1170
3880
8650
0V40
93W0
5120
2700

SwWeo

U 3500
X 4240
1w 8480

2V

u6uo

C

€

Fm o -
| instruct:lon Decimal Sexadecimal
fi‘ 8440 5 000 000 4U 4T40
8540 ® 6 000 000 5T 8V80
k. 8640 7 000 000 6S UXUO
i 8740 8 000 000 78 1200
i 8180 - 10 000 000 98 9680
f .
8280 20 000 000 131 2V00 -
| 8380 30 000 000 1U9 U380
. ' § -
?IJ,H - 8480 50 000 000 2XS X080
A 8580 60 000 000 393 8700
i1
E 3 8680 70 000 000 42U 1V80
A~
. - 8780 80 000 000 4U4 T400
r\
- e

L B b

=
HOWo O FE WO e]

HHEREH HHR
WO mMMfFHFwn

N N
= O

)
DY NP N
VW oW FE W

30
31

177

108
217

APPENDIX III

TAELE QOF POWERS OF 2

256 *
512
o024
o48

096 »
192

768

536 *
072
144
288

576 *.
152
304
608

216 -
432
864
728

456
912
824
648

O¥FE P

18
36

144
288
576

1 152

oFro-

17
35
70
140

281
562
125
251

503
007
014
028

057
115
230
460

921

17
34

68
«137
271
549

099
199

796.

592

368 T

737

47
949

799

599
199
398
797

59l
188

376
752

504

294 967
589
179 869
359

719 476
438
877
755

511
02
o4

093

186
372

488

509
018

037
075
151
303

606

. Character

3 'r' TAB‘

b

CARRIAGE RETURN
UPPER CASE* -

LOWER CASE
Tﬂvc [;lr.td‘h

BACK SPACE .

Eight-Level Code

ELX OP

Monrobot XI Instruction

Sexadecimal Output

‘8 4 2.1 Input-Output Code Code-

0011
0011
1000

0111

0111

1110
1101
0000
1100
1010

1w (

1V
80
3u .

3S

/. BW

5V
80
70
78

$:ﬂ>o

R ¥

.

APPENDIX IV

- :
¥ - pe,]
4 B

Binary to Decimal and Decimal to Binary Cdnversipn
f-v 4 2l ’f

Every decimal number can be represented as ‘a &igit
times a power of _ten. For example, 1073 is equival o
1x103 +0 x 102 + 7 x 101 + 3 x 100, To convert ;%Eﬁtnum-
bers to binary, the simplest method would be to uses bi-
nary equivalents of the decimal values. To convert binary
numbers to decimal numbers, it would be necessary to find the
decimal equivalents of the binary values. Monrobot Mark XI
has special commands to facilitate these conversions.

For example, to convert the decimal number 32 to its bi-
nary equivalent 100000, the following operations would be
done. Both three and two would be given their binary equiva-
lents: 3 = 0011 and 2 = 0010. 3 would be multiplied by the
binary equivalent of decimal 10 (1010), giving the binary
value of 11110 or decimal 30. The binary equivalent of
decimal 2 (0010) would be added to 11110, giving binary
100000 or decimal 32,

In converting from binary to decimal, the inverse would

‘be done. It would be necessary to find how many powers of

10 were in each binary number. The simplest method is to
subtract from the binary number the binary equivalent of the-
power of 10 as many times as possible and use this result as’
the digit for that power of 10. The remainder can then be
divided by the next lowest power of 10 for the next digit.
This process is continued until the number is converted.

For example, decimal 256 = 100000000 in bhinary.

Decimal 100 = ik 1100100 binary
Decimal 10 = - 1010 binary
Decimal 1 = 1 binary
Subtracting 100000000 |
1100100 1)
10011100
1100100 (2)
111000

Subtracted twice gives 2 x 100. The remainder is then
divided by 10:

-G

O

111000
1010 (1)
101110
1010 (2)
100100
1010 (3)
11010
1010 (4)
10000
1010 (5)
110

This subtraction is done five times or 5 x 10, The re-
mainder is 110 or divided by 1 binary gives decimal 6. The
result of the conversion is 256. ;

All conversions in Monrobot Mark XI can be done in this
fashion. The commands multiply and divide by powers of 10
give facility in shifting binary values by their decimal
equivalents. The command detract will subtract the powers
of 10 and give the count of the number of subtractions.

- The following pages give examples of subroutines for do-
ing conversion in the computer using these methods.

Input

The routine shown here assumes that the input is coming
from a sixteen-key keyboard whose code is

Decimal Va}ue Binary Value
0 0000
1 0001
2 0010
3 0011
4 0100
sl BT e

Tetrad

APPENDIX V

2,048 Word Drum Address Structure

The 2,048 word drum is available as an optional feature
of the Monrobot XI computer to provide twice the storage of
the 1,024 word drum basic computer.

Monrobot XI programs written for the 1,024 word basic
computer are compatible with the higher capacity drum. The
basic 1,024 register addresses are from 000 to 3XX in both
models of the computer.

An 8's bit in tetrad 2 indicates a register address in
the additional 1,024 word storage area. These register ad-
dresses are consecutive from 800 to TXX. The computer will
not sequence automatically from register 3XX to register 800.

There are no alterations or exception cases of the Mon-
robot XI command structure as described in the Program Manual
when applied to the 1,024 word additional storage computer.

Examples of coding:

Command Basic 1,024 Additional 1,024
Add X050 X850
Jump mark 35XX 3VXX

Basic 1,024 register addresses:

T2 Tl TO
Sexadecimal Binary
T T1 TO|Power|{1l 10 9 8|7 6 5 4|3 2 1 0
of 2
0 0 0 0 0 l 0 0 0 0l 0 0 0 0l 0 0
3 X X 0 0 if 1 1 1 1 1 1 1 1 1

Additional 1,024 register addresses:

Sexadecimal Binary

2 A 0 11 10 9 8 T 6 5 4 3 2 1 0

8 0 0 1 Ol 0 0 0 Ol 0 0 0 0l 0 0

T X X 1 0 i d d 1 1 1 i 1 X 1
=B

O

